Step of Proof: exists_over_and_r
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
exists
over
and
r
:
T
:Type,
A
:
,
B
:(
T
). (
x
:
T
. (
A
B
(
x
)))
(
A
(
x
:
T
.
B
(
x
)))
latex
by ((GenExRepD)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
A
:
C1:
3.
B
:
T
C1:
4.
x
:
T
C1:
5.
A
C1:
6.
B
(
x
)
C1:
x
:
T
.
B
(
x
)
C
2
:
C2:
1.
T
: Type
C2:
2.
A
:
C2:
3.
B
:
T
C2:
4.
A
C2:
5.
x
:
T
C2:
6.
B
(
x
)
C2:
x
:
T
. (
A
B
(
x
))
C
.
Definitions
t
T
,
P
Q
,
P
Q
,
x
(
s
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
origin